« Рассмотрено » На заседании ШМО Протокол № 1 от « 29 » августа 2022г.

«Согласовано» Заместителем директора Узакирова Г.С./ Утверждено
директора МБОУ «ООШ №6"
Чистопольского муниципального
райока РТ/ (Табитова Л.А./
Приказ №174 выклымо в положения по 11 (19.2022 т.м.)

Рабочял программа

учебного предмета геометрия в 7 -9 классах учителя математики
МБОУ «Основная общеобразовательная школа №6» Петровой Анны Сергеевны

2022-2023 уч. год

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

ОБЩАЯ ХАРАКТЕРИСТИКА УЧЕБНОГО КУРСА "ГЕОМЕТРИЯ"

Рабочая программа по учебному курсу "Геометрия" для обучающихся 7-9 классов разработана на основе Федерального государственного образовательного стандарта основного общего образования с учётом и современных мировых требований, предъявляемых к математическому образованию, и традиций российского образования, которые обеспечивают овладение ключевыми компетенциями, составляющими основу для непрерывного образования и саморазвития, а также целостность общекультурного, личностного и познавательного развития обучающихся. В программе учтены идеи и положения Концепции развития математического образования в Российской Федерации. В эпоху цифровой трансформации всех сфер человеческой деятельности невозможно стать образованным современным человеком без базовой математической подготовки. Уже в школе математика служит опорным предметом для изучения смежных дисциплин, а после школы реальной необходимостью становится непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и математической.

Это обусловлено тем, что в наши дни растёт число профессий, связанных с непосредственным применением математики: и в сфере экономики, и в бизнесе, и в технологических областях, и даже в гуманитарных сферах. Таким образом, круг школьников, для которых математика может стать значимым предметом, расширяется.

Практическая полезность математики обусловлена тем, что её предметом являются фундаментальные структуры нашего мира: пространственные формы и количественные отношения от простейших, усваиваемых в непосредственном опыте, до достаточно сложных, необходимых для развития научных и прикладных идей. Без конкретных математических знаний затруднено понимание принципов устройства и использования современной техники, восприятие и интерпретация разнообразной социальной, экономической, политической информации, малоэффективна повседневная практическая деятельность. Каждому человеку в своей жизни приходится выполнять расчёты и составлять алгоритмы, находить и применять формулы, владеть практическими приёмами геометрических измерений и построений, читать информацию, представленную в виде таблиц, диаграмм и графиков, жить в условиях неопределённости и понимать вероятностный характер случайных событий.

Одновременно с расширением сфер применения математики в современном обществе всё более важным становится математический стиль мышления, проявляющийся в определённых умственных навыках. В процессе изучения математики в арсенал приёмов и методов мышления человека естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. Объекты математических умозаключений, правила их конструирования раскрывают механизм логических построений, способствуют выработке умения формулировать, обосновывать и доказывать суждения, тем самым развивают логическое мышление. Ведущая роль принадлежит математике и в формировании алгоритмической компоненты мышления и воспитании умений действовать по заданным алгоритмам, совершенствовать известные и конструировать новые. В процессе решения задач — основой учебной деятельности на уроках математики — развиваются также творческая и прикладная стороны мышления.

Обучение математике даёт возможность развивать у обучающихся точную, рациональную и информативную речь, умение отбирать наиболее подходящие языковые, символические, графические средства для выражения суждений и наглядного их представления.

Необходимым компонентом общей культуры в современном толковании является общее знакомство с методами познания действительности, представление о предмете и методах математики, их отличий от методов других естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач. Таким образом, математическое образование вносит свой вклад в формирование общей культуры человека.

Изучение математики также способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии.

ЦЕЛИ ИЗУЧЕНИЯ УЧЕБНОГО КУРСА "ГЕОМЕТРИЯ"

«Математику уже затем учить надо, что она ум в порядок приводит», — писал великий русский ученый Михаил Васильевич Ломоносов. И в этом состоит одна из двух целей обучения геометрии как составной части математики в школе. Этой цели соответствует доказательная линия преподавания геометрии. Следуя представленной рабочей программе, начиная с седьмого класса на уроках геометрии обучающийся учится проводить доказательные рассуждения, строить логические умозаключения, доказывать истинные утверждения и строить контр примеры к ложным, проводить рассуждения от «противного», отличать свойства от признаков, формулировать обратные утверждения. Ученик, овладевший искусством рассуждать, будет применять его и в окружающей жизни.

Как писал геометр и педагог Игорь Федорович Шарыгин, «людьми, понимающими, что такое доказательство, трудно и даже невозможно манипулировать». И в этом состоит важное воспитательное значение изучения геометрии, присущее именно отечественной математической школе. Вместе с тем авторы программы предостерегают учителя от излишнего формализма, особенно в отношении начал и оснований геометрии. Французский математик Жан Дьедонне по этому поводу высказался так: «Что касается деликатной проблемы введения «аксиом», то мне кажется, что на первых порах нужно вообще избегать произносить само это слово. С другой же стороны, не следует упускать ни одной возможности давать примеры логических заключений, которые куда в большей мере, чем идея аксиом, являются истинными и единственными двигателями математического мышления».

Второй целью изучения геометрии является использование её как инструмента при решении как математических, так и практических задач, встречающихся в реальной жизни. Окончивший курс геометрии школьник должен быть в состоянии определить геометрическую фигуру, описать словами данный чертёж или рисунок, найти площадь земельного участка, рассчитать необходимую длину оптоволоконного кабеля или требуемые размеры гаража для автомобиля. Этому соответствует вторая, вычислительная линия в изучении геометрии в школе. Данная практическая линия является не менее важной, чем первая. Ещё Платон предписывал, чтобы «граждане Прекрасного города ни в коем случае не оставляли геометрию, ведь немаловажно даже побочное её применение — в военном деле да, впрочем, и во всех науках — для лучшего их усвоения: мы ведь знаем, какая бесконечная разница существует между человеком причастным к геометрии и непричастным». Для этого учителю рекомендуется подбирать задачи практического характера для рассматриваемых тем, учить детей строить математические модели реальных жизненных ситуаций, проводить вычисления и оценивать адекватность полученного результата. Крайне важно подчёркивать связи геометрии с другими предметами, мотивировать использовать определения геометрических фигур и

понятий, демонстрировать применение полученных умений в физике и технике. Эти связи наиболее ярко видны в темах «Векторы», «Тригонометрические соотношения», «Метод координат» и «Теорема Пифагора».

МЕСТО УЧЕБНОГО КУРСА В УЧЕБНОМ ПЛАНЕ

Согласно учебному плану в 7—9 классах изучается учебный курс «Геометрия», который включает следующие основные разделы содержания: «Геометрические фигуры и их свойства», «Измерение геометрических величин», а также «Декартовы координаты на плоскости», «Векторы», «Движения плоскости» и «Преобразования подобия».

Учебный план предусматривает изучение геометрии на базовом уровне, исходя из не менее 68 учебных часов в учебном году, всего за три года обучения — не менее 204 часов.

ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ СОДЕРЖАНИЯ КУРСА

Программа обеспечивает достижение следующих результатов освоения образовательной программы основного общего образования:

личностные:

- 1) формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учётом устойчивых познавательных интересов;
- 2) формирование целостного мировоззрения, соответствующего современному уровню развития науки и обществен-ной практики;
- 3) формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности;
- 4) умение ясно, точно, грамотно излагать свои мысли в уст-ной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
- 5) критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
- 6) креативность мышления, инициативу, находчивость, активность при решении геометрических задач;

- 7) умение контролировать процесс и результат учебной математической деятельности;
- 8) способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;

метапредметные:

- 1) умение самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач;
- 2) умение осуществлять контроль по результату и по способу действия на уровне произвольного внимания и вносить не-обходимые коррективы;
- 3)умение адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения;
- 4)осознанное владение логическими действиями определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований и критериев, установления родовидовых связей;
- 5) умение устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и выводы;
- 6) умение создавать, применять и преобразовывать знаково-символические средства, модели и схемы для решения учебных и познавательных задач;
- 7) умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников, общие способы работы; умение работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать парт-ёра; формулировать, аргументировать и отстаивать своё мнение;
- 8)формирование и развитие учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности);
- 9)формирование первоначальных представлений об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;
 - 10) умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

- 11) умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
- 12) умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации;и умение выдвигать гипотезы при решении учебных задачпонимать необходимость их проверки;
 - 13) умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
- 15) понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом
- 16) умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
- 17) умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

предметные:

- 1) овладение базовым понятийным аппаратом по основным разделам содержания; представление об основных изучаемых понятиях (число, геометрическая фигура, вектор, координаты) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;
- 2) умение работать с геометрическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли в устной и письменной речи с применением математической терминологии и символики, использовать различные языки математики, проводить классификации, логические обоснования, доказательства математических утверждений;
- 3) овладение навыками устных, письменных, инструментальных вычислений;
- 4) овладение геометрическим языком, умение использовать его для описания предметов окружающего мира, развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических построений;
- 5) усвоение систематических знаний о плоских фигурах и их свойствах, а также на наглядном уровне о простейших пространственных телах, умение применять систематические знания о них для решения геометрических и практических задач
- 6) умение измерять длины отрезков, величины углов, использовать формулы для нахождения периметров, площадей и объёмов геометрических фигур;

7)	умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с
	использованием при необходимости справочных материалов, калькулятора, компьютера.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ КУРСА ГЕОМЕТРИИ В 7-9 КЛАССАХ

Наглядная геометрия Выпускник научится:

- 1) распознавать на чертежах, рисунках, моделях и в окружающем мире плоские и пространственные геометрические фигуры;
- 2) распознавать развёртки куба, прямоугольного параллелепипеда, правильной пирамиды, цилиндра и конуса;
- 3) определять по линейным размерам развёртки фигуры линейные размеры самой фигуры и наоборот;
- 4) вычислять объём прямоугольного параллелепипеда. Выпускник получит возможность:
- 5) вычислять объёмы пространственных геометрических фигур, составленных из прямоугольных параллелепипедов;
- 6) углубить и развить представления о пространственных геометрических фигурах;
- 7) применять понятие развёртки для выполнения практических расчётов.

Геометрические фигуры

Выпускник научится:

- 1) пользоваться языком геометрии для описания предметов окружающего мира и их взаимного расположения;
- 2) распознавать и изображать на чертежах и рисунках геометрические фигуры и их конфигурации;
- 3) находить значения длин линейных элементов фигур и их отношения, градусную меру углов от 0 до 180°, применяя определения, свойства и признаки фигур и их элементов, отношения фигур (равенство, подобие, симметрии, поворот, параллельный перенос);
- 4) оперировать с начальными понятиями тригонометрии и выполнять элементарные операции над функциями углов;
- 5) решать задачи на доказательство, опираясь на изученные свойства фигур и отношений между ними и применяя изученные методы доказательств;
- 6) решать несложные задачи на построение, применяя основные алгоритмы построения с помощью циркуля и линейки;
- 7) решать простейшие планиметрические задачи в пространстве.

Выпускник получит возможность:

- 8) овладеть методами решения задач на вычисления и доказательства: методом от противного, методом подо-бия, методом перебора вариантов и методом геометрических мест точек;
- 9) приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении геометрических задач;
- 10) овладеть традиционной схемой решения задач на построение с помощью циркуля и линейки: анализ, построение, доказательство и исследование;
- 11) научиться решать задачи на построение методом геометрического места точек и методом подобия;
- 12) приобрести опыт исследования свойств планиметрических фигур с помощью компьютерных программ;
- 13) приобрести опыт выполнения проектов по темам: «Геометрические преобразования на плоскости», «Построение отрезков по формуле».

Измерение геометрических величин

Выпускник научится:

- 1) использовать свойства измерения длин, площадей и углов при решении задач на нахождение длины отрезка, длины окружности, длины дуги окружности, градусной меры угла;
- 2) вычислять длины линейных элементов фигур и их углы, используя формулы длины окружности и длины дуги окружности, формулы площадей фигур
- 2) вычислять площади треугольников, прямоугольников, параллелограммов, трапеций, кругов и секторов;
- 3) вычислять длину окружности, длину дуги окружности;
- 4) решать задачи на доказательство с использованием формул длины окружности и длины дуги окружности, формул площадей фигур;
- 5) решать практические задачи, связанные с нахождением геометрических величин (используя при необходимости справочники и технические средства).

Выпускник получит возможность:

- 6) вычислять площади фигур, составленных из двух или более прямоугольников, параллелограммов, треугольников, круга и сектора;
- 7) вычислять площади многоугольников, используя отношения равновеликости и равносоставленности;
- 8) приобрести опыт применения алгебраического и тригонометрического аппарата и идей движения при решении задач на вычисление площадей многоугольников.

Координаты

Выпускник научится:

- 1) вычислять длину отрезка по координатам его концов; вычислять координаты середины отрезка;
- 2) использовать координатный метод для изучения свойств прямых и окружностей.

Выпускник получит возможность:

3) овладеть координатным методом решения задач на вычисление и доказательство;

- 4) приобрести опыт использования компьютерных программ для анализа частных случаев взаимного расположения окружностей и прямых;
- 5) приобрести опыт выполнения проектов на тему «Применение координатного метода при решении задач на вычисление и доказательство».

Векторы

Выпускник научится:

- 1) оперировать с векторами: находить сумму и разность двух векторов, заданных геометрически, находить вектор, равный произведению заданного вектора на число;
- 2) находить для векторов, заданных координатами: длину вектора, координаты суммы и разности двух и более векторов, координаты произведения вектора на число, применяя при необходимости сочетательный, переместительный и распределительный законы;
- 3) вычислять скалярное произведение векторов, находить угол между векторами, устанавливать перпендикулярность прямых.

Выпускник получит возможность:

- 4) овладеть векторным методом для решения задач на вычисление и доказательство;
- 5) приобрести опыт выполнения проектов на тему «Применение векторного метода при решении задач на вычисление и доказательство».

Содержание курса (7-9 классы)

Наглядная геометрия. Наглядные представления о пространственных фигурах: куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр. Изображение пространственных фигур. Примеры сечений. Многогранники. Правильные многогранники. Примеры развёрток многогранников, цилиндра и конуса.

Понятие объёма; единицы объёма. Объём прямоугольного параллелепипеда, куба.

Геометрические фигуры. Прямые и углы. Точка, прямая,плоскость. Отрезок, луч. Угол. Виды углов. Вертикальные и смежные углы. Биссектриса угла.

Параллельные и пересекающиеся прямые. Перпендикулярные прямые. Теоремы о параллельности и перпендикулярности прямых. Перпендикуляр и наклонная к прямой. Серединный перпендикуляр к отрезку.

Геометрическое место точек. Свойства биссектрисы угла и серединного перпендикуляра к отрезку.

Треугольник. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренные и равносторонние треугольники; свойства и признаки равнобедренного треугольника. Признаки равенства треугольников. Неравенство треугольника. Соотношения между сторонами и углами треугольника.

Сумма углов треугольника. Внешние углы треугольника. Теорема Фалеса. Подобие треугольников. Признаки подобия треугольников. Теорема Пифагора. Синус, косинус, тангенс, котангенс острого угла прямоугольного треугольника и углов от 0 до 180°; приведение к острому углу. Решение прямоугольных треугольников. Основное тригонометрическое тождество. Формулы, связывающие синус, косинус, тангенс, котангенс одного и того же угла. Решение треугольников: теорема косинусов и теорема синусов. Замечательные точки треугольника.

Четырёхугольник. Параллелограмм, его свойства и признаки. Прямоугольник, квадрат, ромб, их свойства и признаки. Трапеция, средняя линия трапеции.

Многоугольник. Выпуклые многоугольники. Сумма углов выпуклого многоугольника. Правильные многоугольники.

Окружность и круг. Дуга, хорда. Сектор, сегмент. Центральный угол, вписанный угол, величина вписанного угла. Взаимное расположение прямой и окружности, двух окружностей. Касательная и секущая к окружности, их свойства. Вписанные и описанные многоугольники. Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Вписанные и описанные окружности правильного многоугольника.

Геометрические преобразования. Понятие о равенстве фигур. Понятие о движении: осевая и центральная симметрии, параллельный перенос, поворот. Понятие о подобии фигур и гомотетии.

Построения с помощью циркуля и линейки. Основные задачи на построение: деление отрезка пополам; построение угла, равного данному; построение треугольника по трём сторонам; построение перпендикуляра к прямой; построение биссектрисы угла; деление отрезка на *п* равных частей.

Решение задач на вычисление, доказательство и построение с использованием свойств изученных фигур.

Измерение геометрических величин. Длина отрезка. Расстояние от точки до прямой. Расстояние между параллельными прямыми. Периметр многоугольника.

Длина окружности, число π ; длина дуги окружности. Градусная мера угла, соответствие между величиной центрального угла и длиной дуги окружности.

Понятие площади плоских фигур. Равносоставленные и равновеликие фигуры. Площадь прямоугольника. Площади параллелограмма, треугольника и трапеции. Площадь многоугольника. Площадь круга и площадь сектора. Соотношение между площадями подобных фигур.

Решение задач на вычисление и доказательство с использованием изученных формул.

Координаты. Уравнение прямой. Координаты серединыотрезка. Формула расстояния между двумя точками плоскости. Уравнение окружности.

Векторы. Длина (модуль) вектора. Равенство векторов.Коллинеарные векторы. Координаты вектора. Умножение век-тора на число, сумма векторов, разложение вектора по двум неколлинеарным векторам. Скалярное произведение векторов.

Теоретико-множественные понятия. Множество, элементмножества. Задание множеств перечислением элементов, характеристическим свойством. Подмножество. Объединение и пересечение множеств.

Элементы логики. Определение. Аксиомы и теоремы. Доказательство. Доказательство от противного. Теорема, обратная данной. Пример и контрпример.

Понятие о равносильности, следовании, употребление логических связок *если* ..., *то ...*, *в том и только в том случае*, логические связки *и, или*.

Геометрия в историческом развитии. От землемерия к геометрии. Пифагор и его школа. Фалес. Архимед. Построение правильных многоугольников. Трисекция угла. Квадратура круга. Удвоение куба. История числа π. Золотое сечение. «Начала» Евклида. Л. Эйлер. Н. И. Лобачевский. История пятого постулата. Изобретение метода координат, позволяющего переводить геометрические объекты на язык алгебры. Р. Декарт и П. Ферма. Примеры различных систем координат на плоскости.

СОДЕРЖАНИЕ УЧЕБНОГО КУРСА 7 класса

1. ОСНОВНЫЕ СВОЙСТВА ПРОСТЕЙШИХ ГЕОМЕТРИЧЕСКИХ ФИГУР. СМЕЖНЫЕ И ВЕРТИКАЛЬНЫЕ УГЛЫ. (11 ЧАСОВ).

Начальные понятия планиметрии. Геометрические фигуры. Точка и прямая. Отрезок, длина отрезка и ее свойства. Полуплоскость. Полупрямая. Угол, величина угла и ее свойства. Треугольник. Равенство отрезков, углов, треугольников. Теоремы и доказательства. Аксиомы.

Смежные и вертикальные углы и их свойства. Перпендикулярные прямые. Биссектриса утла и ее свойства.

<u>Основная цель</u> — систематизировать знания учащихся об основных свойствах простейших геометрических фигур.

Для более компактного изложения курса геометрии VII класса рекомендуется материал первых двух параграфов учебника объединить в одну тему. При этом понятие биссектрисы угла ввести непосредственно при изучении равенства углов, а материал пункта «Параллельные прямые» изучить в теме «Сумма углов треугольника».

В данной теме вводятся основные свойства простейших геометрических фигур (аксиомы планиметрии) на основе наглядных представлений учащихся путем обобщения очевидных или известных из курса математики I—VI классов геометрических фактов. При этом основное внимание уделяется постепенному формированию у учащихся навыков применения свойств геометрических фигур в ходе решения задач.

Изучение этой темы также должно способствовать развитию у учащихся наглядных геометрических представлений, навыков изображения планиметрических фигур, устной математической речи, постепенному формированию у учащихся навыков доказательных рассуждений. Поэтому при решении большинства задач, рекомендованных к теме, следует обратить внимание на работу с рисунками и поиск решения.

При изучении смежных и вертикальных углов основное внимание уделяется отработке навыков применения их свойств в процессе решения задач.

При изучении теоремы о существовании и единственности перпендикуляра к прямой, проведенного через ее точку, используется метод доказательства от противного. Обобщая накопленный учащимися опыт применения этого метода на интуитивном уровне в ходе решения задач, можно провести подробное обсуждение его с учащимися и проиллюстрировать его применение в ходе решения задач, рекомендованных к теме.

2. ТРЕУГОЛЬНИКИ. РАВЕНСТВО ТРЕУГОЛЬНИКОВ (17 Ч).

Признаки равенства треугольников. Медианы, биссектрисы и высоты треугольника. Равнобедренный треугольник и его свойства.

Основные задачи на построение с помощью циркуля и линейки: треугольника по трем сторонам; угла, равного данному; биссектрисы угла; перпендикулярной прямой; деление отрезка пополам.

Параллельные прямые. Основное свойство параллельных прямых. Признаки параллельности прямых.

<u>Основная цель</u> — изучить признаки равенства треугольников; сформировать умение доказывать равенство треугольников с опорой на признаки равенства треугольников, решать простейшие задачи на построение с помощью циркуля и линейки, дать систематизированные сведения о параллельности прямых.

Использование признаков равенства треугольников является одним из главнейших методов доказательства теорем и решения задач, поэтому материал является основополагающим во всем курсе геометрии и соответственно занимает центральное место в содержании курса планиметрии VII класса.

Признаки равенства треугольников должны усваиваться учащимися в процессе решения задач, при этом закрепляются формулировки теорем и формируются умения их практического применения. Многие доказательные рассуждения, как при доказательствах теорем, так и при решении задач построены по схеме: выделение равных элементов треугольников — доказательство равенства треугольников — следствия, вытекающие из равенства данных треугольников. На формирование этих умений необходимо обратить самое пристальное внимание. В данной теме, являющейся начальным этапом их формирования, полезно уделить внимание решению задач по готовым чертежам и формированию умения выделять равные элементы треугольников из заданной конфигурации.

Изучение признаков равенства треугольников может быть органично соединено с решением задач на построение с помощью циркуля и линейки: треугольника по трем сторонам; утла, равного данному; биссектрисы угла; перпендикулярной прямой; деление отрезка пополам. При этом признаки равенства треугольников используются для доказательства единственности решения.

Основным резервом сокращения нагрузки при изучении данной темы может служить отказ от требования обязательного воспроизведения всеми учащимися доказательств признаков равенства треугольников.

3. ПАРАЛЛЕЛЬНЫЕ ПРЯМЫЕ. (13 ЧАСОВ).

Признаки параллельности прямых. Аксиома параллельных прямых. Свойства параллельных прямых.

<u>Основная цель</u> – ввести одно из важнейших понятий – понятие параллельных прямых; дать новое представление об аксиомах и аксиоматическом методе в геометрии; ввести аксиому параллельных прямых.

В начале изучения параллельных прямых вводится последняя из аксиом планиметрии — аксиома о параллельных прямых. Знание признаков параллельности прямых, свойств углов при параллельных прямых и секущей находит затем широкое применение при изучении четырехугольников, подобия треугольников, а также в курсе стереометрии. Поэтому, в ходе решения задач, следует уделить значительное внимание формированию умений доказывать параллельность данных прямых, с использованием соответствующих признаков, находить углы при параллельных прямых и секущей.

4. СУММА УГЛОВ ТРЕУГОЛЬНИКА. СООТНОШЕНИЯ МЕЖДУ СТОРОНАМИ И УГЛАМИ ТРЕУГОЛЬНИКА. (18 Ч).

Сумма углов треугольника. Внешний угол треугольника.

Признаки равенства прямоугольных треугольников. Расстояние от точки до прямой. Расстояние между параллельными прямыми.

Основная цель — расширить знания учащихся о треугольниках.

В данной теме рассматривается одна из важнейших теорем курса — теорема о сумме углов треугольника, в которой впервые формулируется неочевидный геометрический факт. (При проведении, например, практической работы на вычисление суммы углов треугольника с помощью транспортира у значительной части учащихся получается результат, отличный от 180°.)

Теорема о сумме углов треугольника позволяет получить важные следствия — свойство внешнего угла треугольника и признак равенства прямоугольных треугольников.

В конце темы вводится понятие расстояния от точки до прямой. При введении понятия расстояния между параллельными прямыми у учащихся формируется представление о параллельных прямых как равноотстоящих друг от друга, что будет в дальнейшем использоваться для проведения обоснований в курсе планиметрии и при изучении стереометрии.

4. ПОВТОРЕНИЕ. РЕШЕНИЕ ЗАДАЧ (11 ч)

Содержание курса геометрии 8 класса

Четырехугольники.(14ч)

Многоугольник, выпуклый многоугольник, четырехугольник. Сумма углов выпуклого многоугольника. Вписанные и описанные многоугольники. Правильные многоугольники.

Параллелограмм, его свойства и признаки. Прямоугольник, квадрат, ромб, их свойства и признаки. Трапеция, средняя линия трапеции; равнобедренная

трапеция. Осевая и центральная симметрия.

Основная цель – изучить наиболее важные виды четырехугольников – параллелограмм, прямоугольник, , ромб, квадрат, трапецию; дать представления о фигурах, обладающих осевой или центральной симметрией.

Требования к знаниям и умениям

Уровень обязательной подготовки обучающегося

- Знать различные виды четырехугольников, их признаки и свойства.
- Уметь применять свойства четырехугольников при решении простых задач.

Уровень возможной подготовки обучающегося

- Уметь решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними.
- Уметь решать задачи на построение.

Площадь.(14ч)

Понятие площади многоугольника. Площади прямоугольника, параллелограмма, треугольника, трапеции. Теорема Пифагора.

Основная цель — расширить и углубить полученные в 5-6 классах представления учащихся об измерении и вычислении площадей, вывести формулы площадей наиболее важных видов четырехугольников, доказать одну из главных теорем геометрии — теорему Пифагора.

Требования к знаниям и умениям

Уровень обязательной подготовки обучающегося

- Уметь пользоваться языком геометрии для описания предметов окружающего мира.
- Уметь вычислять значения площадей основных геометрических фигур и фигур, составленных из них;
- Знать формулы вычисления геометрических фигур, теорему Пифагора и уметь применять их при решении задач.
- Уметь выполнять чертежи по условию задач

Уровень возможной подготовки обучающегося

- Знать формулы вычисления геометрических фигур, теорему Пифагора и уметь применять их при решении задач.
- Уметь решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними, применяя дополнительные построения, алгебраический аппарат, идеи симметрии.
- Уметь решать задачи на доказательство и использовать дополнительные формулы для нахождения площадей геометрических фигур.

Подобные треугольники.(19ч)

Подобные треугольники. Признаки подобия треугольников. Применение подобия к доказательству теорем и решению задач. Синус, косинус и тангенс острого угла прямоугольного треугольника.

Основная цель – ввести понятие подобных треугольников; рассмотреть признаки подобия треугольников и их применение; сделать первый шаг в освоении учащимися тригонометрического аппарата геометрии.

Требования к знаниям и умениям

Уровень обязательной подготовки обучающегося

- Знать определение подобных треугольников.
- Уметь применять подобие треугольников при решении несложных задач.

- Уметь пользоваться языком геометрии для описания предметов окружающего мира.
- Уметь распознавать геометрические фигуры, различать их взаимное расположение.
- Уметь изображать геометрические фигуры.
- Уметь выполнять чертежи по условию задач.
- Знать признаки подобия треугольников, уметь применять их для решения практических задач.
- Уметь находить синус, косинус, тангенс и котангенс острого угла прямоугольного треугольника.

Уровень возможной подготовки обучающегося

- Уметь решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними.
- Уметь применять признаки подобия треугольников для решения практических задач.
- Уметь проводить доказательные рассуждения при решении задач, используя известные теоремы.
- Уметь решать геометрические задачи на соотношения между сторонами и углами прямоугольного треугольника.

Окружность.(17ч)

Взаимное расположение прямой и окружности. Касательная к окружности, ее свойство И признак. Центральный, вписанный углы;

величина вписанного угла; двух окружностей; равенство касательных, проведенных из одной точки. Метрические соотношения в окружности: свойства секущих, касательных, хорд. Окружность, вписанная в треугольник, и окружность, описанная около треугольника. Вписанные и описанные четырехугольники. Вписанные и описанные окружности правильного многоугольника.

Основная цель — изучить новые факты, связанные с окружностью, познакомить учащихся с четырьмя замечательными точками треугольника.

требования к знаниям и умениям

Уровень обязательной подготовки обучающегося

- Уметь вычислять значения геометрических величин.
- Знать свойства биссектрисы угла и серединного перпендикуляра к отрезку.
- Уметь распознавать геометрические фигуры, различать их взаимное расположение.
- Уметь решать задачи на построение.

Уровень возможной подготовки обучающегося

- Уметь решать геометрические задачи, опираясь на изученные свойства фигур и отношений между ними.
- Уметь проводить доказательные рассуждения при решении задач, используя известные теоремы.
- Знать метрические соотношения в окружности: свойства секущих, касательных, хорд и уметь применять их в решении задач.
- Иметь понятие о вписанных и описанных четырехугольниках.

Повторение. Решение задач. (6ч)

Основная цель – систематизировать и повторить основные вопросы курса геометрии 8 класса.

Содержание учебного предмета «Геометрия 9»

Модуль «Геометрия»

Геометрия – один из важнейших компонентов математического образования, необходимая для приобретения конкретных знаний о пространстве и практически значимых умений, формирования языка описания объектов окружающего мира, для развития пространственного воображения и интуиции, математической культуры, для эстетического воспитания учащихся. Изучение геометрии вносит вклад в развитие логического мышления, в формирование понятия доказательства.

Содержание программы соответствует обязательному минимуму содержания образования и имеет большую практическую направленность. Данное планирование определяет достаточный объем учебного времени для повышения математических знаний, учащихся в среднем звене школы, улучшения усвоения других учебных предметов.

Векторы и метод координат (17 ч)

Понятие вектора. Равенство векторов. Сложение и вычитание векторов. Умножение вектора на число. Разложение вектора по двум неколлинеарным векторам. Координаты вектора. Простейшие задачи в координатах. Уравнения окружности и прямой. Применение векторов и координат при решении задач.

Основная цель — научить учащихся выполнять действия над векторами как направленными отрезками, что важно для применения векторов в физике; познакомить с использованием векторов и метода координат при решении геометрических задач. Вектор определяется как направленный отрезок и действия над векторами вводятся так, как это принято в физике, т. е. как действия с направленными отрезками.

Основное внимание должно быть уделено выработке умений выполнять операции над векторами (складывать векторы по правилам треугольника и параллелограмма, строить вектор, равный разности двух данных векторов, а также вектор, равный произведению данного вектора на данное число).

На примерах показывается, как векторы могут применяться к решению геометрических задач. Демонстрируется эффективность применения формул для координат середины отрезка, расстояния между двумя точками, уравнений окружности и прямой в конкретных геометрических задачах, тем самым дается представление об изучении геометрических фигур с помощью методов алгебры.

Соотношения между сторонами и углами треугольника (16 ч)

Синус, косинус и тангенс угла. Теоремы синусов и косинусов. Решение треугольников. Скалярное произведение векторов и его применение в геометрических задачах.

Основная цель — развить умение учащихся применять тригонометрический аппарат при решении геометрических задач.

Синус и косинус любого угла от 0° до 180° вводятся с помощью единичной полуокружности, доказываются теоремы синусов и косинусов и выводится еще одна формула площади треугольника (половина произведения двух сторон на синус угла между ними). Этот аппарат применяется к решению треугольников.

Скалярное произведение векторов вводится как в физике (произведение длин векторов на косинус угла между ними). Рассматриваются свойства скалярного произведения и его применение при решении геометрических задач.

Основное внимание следует уделить выработке прочных навыков в применении тригонометрического аппарата при решении геометрических задач.

Длина окружности и площадь круга (11 ч)

Правильные многоугольники. Окружности, описанная около правильного многоугольника и вписанная в него. Построение правильных многоугольников. Длина окружности. Площадь круга.

Основная цель — расширить знание учащихся о многоугольниках; рассмотреть понятия длины окружности и площади круга и формулы для их вычисления В начале темы дается определение правильного многоугольника и рассматриваются теоремы об окружностях, описанной около правильного многоугольника и вписанной в него. С помощью описанной окружности решаются задачи о построении правильного шестиугольника и правильного 12-угольника, если дан правильный п-угольник.

Формулы, выражающие сторону правильного многоугольника и радиус вписанной в него окружности через радиус описанной окружности, используются при выводе формул длины окружности и площади круга. Вывод опирается на интуитивное представление о пределе: при неограниченном увеличении числа сторон правильного многоугольника, вписанного в окружность, его периметр стремится к длине этой окружности, а площадь — к площади круга, ограниченного окружностью.

Движения (7 ч)

Отображение плоскости на себя. Понятие движения. Осевая и центральная симметрии. Параллельный перенос. Поворот. Наложения и движения. Основная цель — познакомить учащихся с понятием движения и его свойствами, с основными видами движений, со взаимоотношениями наложений и движений.

Движение плоскости вводится как отображение плоскости на себя, сохраняющее расстояние между точками. При рассмотрении видов движений основное внимание уделяется построению образов точек, прямых, отрезков, треугольников при осевой и центральной симметриях, параллельном переносе, повороте. На эффектных примерах показывается применение движений при решении геометрических задач. Понятие наложения относится в данном курсе к числу основных понятий. Доказывается, что понятия наложения и движения являются эквивалентными: любое наложение является движением плоскости и обратно. Изучение доказательства не является обязательным, однако следует рассмотреть связь понятий наложения и движения.

Начальные сведения из стереометрии (7 ч).

Предмет стереометрия. Многогранник. Призма. Параллелепипед. Цилиндр. Конус. Сфера и шар.

Основная цель — познакомить учащихся с многогранниками; телами и поверхностями вращения.

Об аксиомах геометрии (2 ч)

Об аксиомах планиметрии. Некоторые сведения о развитии геометрии

Основная цель — дать более глубокое представление о системе аксиом планиметрии и аксиоматическом методе

Итоговое повторение (8 ч)

Параллельные прямые. Треугольники. Четырехугольники. Окружность.

Основная цель — использовать математические знания для решения различных математических задач